Session 7: Methods for producing Tongan population estimates

Kim Dunstan \& Cat Anderson

Basic population equation

$$
\begin{aligned}
& P_{t+1}=P_{t}+\underbrace{B-D}_{\text {Natural increase }}+\underset{\underbrace{B}_{\text {Net migration }}}{B-D} \\
& \mathrm{P}_{\mathrm{t}+1} \quad \text { Population at end of time period } \\
& P_{t} \quad \text { Population at start of time period (base population) } \\
& \text { B Births during time period } \\
& \text { D Deaths during time period } \\
& \text { I In-migration (arrivals) during time period } \\
& 0 \text { Out-migration (departures) during time period }
\end{aligned}
$$

Exercise 1

Annual estimates from 30 June 2016 to 30 June 2021
Total population only

Exercise 2

6-monthly estimates from 30 June 2016 to 30 June 2021
Total population only

Lexis Diagram

Exercise 3

Annual estimates from 30 June 2016 to 30 June 2021
Total population by 5 -year age groups (0-4, 5-9, ... 80-84, 85+ years)

Exercise 4

Annual estimates from 30 June 2016 to 30 June 2021
Total population by sex (male, female) by single-year of age ($0,1,2, \ldots 84,85+$ years)

'As at' and 'mean' population estimates

- Basic calculations produce estimates 'as at' a given date
- Suitable as denominator for stock populations:
- Population shares at a date
- Population change between two dates
- Where the numerator is 'flow' data - over a period of time - a more appropriate denominator is a 'mean' population
- This is simply the weighted average of 'as at' populations
- Mean pop YE Jun $2017=1 / 2 .{ }^{\prime} 30$ June $2016{ }^{\prime}+1 / 2 .{ }^{\prime} 30$ June 2017 ${ }^{\prime}$
- Mean pop YE Jun 2017 = $1 / 4 .{ }^{\prime} 30$ Jun 2016 $+1 / 2 .{ }^{\prime} 30$ Sep 2016 $+1 / 2 .{ }^{\prime} 31$ Dec 2017 $+1 / 2 .{ }^{\prime} 31$ Mar 2017 $+1 / 4 .{ }^{\prime} 30$ Jun 2017
- Suitable as denominator for flow populations:
- GDP per capita
- Birth and death rates
- The 'as at' population in the middle of the year \approx 'mean' population over the year

